Publications

As my publication record illustrates, I prefer to research by collaborating with other scientists.

Publication Listings

Publications (PDF)

Google Scholar Page

Publications on NASA ADS

Preprints on the arXiv

26. ERF: Energy Research and Forecasting Model

Simulated three-dimensional rainstorm supercell showing cloud water (white), rain water (red), and accumulated rainfall (bottom). DOI: https://www.doi.org/10.48550/arXiv.2412.04395

Simulated three-dimensional rainstorm supercell showing cloud water (white), rain water (red), and accumulated rainfall (bottom). DOI: https://www.doi.org/10.48550/arXiv.2412.04395

A. Lattanzi, A. Almgren, E. Quon, M. Natarajan, B. Kosovic, J. Mirocha, B. Perry, D. Wiersema, D. Willcox, X. Yuan, W. Zhang

2024, arXiv:2412.04395

https://www.doi.org/10.48550/arXiv.2412.04395

25. Code Generation for AMReX with Applications to Numerical Relativity

Simulated binary black hole inspiral traces black hole centers through (3+1) spacetime and radiates the characteristic chirp waveform. DOI: https://www.doi.org/10.1088/1361-6382/ad0b37

Simulated binary black hole inspiral traces black hole centers through (3+1) spacetime and radiates the characteristic chirp waveform. DOI: https://www.doi.org/10.1088/1361-6382/ad0b37

A. J. Peterson, D. Willcox, and P. Moesta

2023, Classical and Quantum Gravity, 40, 245013

https://www.doi.org/10.1088/1361-6382/ad0b37

24. Dimming the Lights: 2D Simulations of Deflagrations of Hybrid C/O/Ne White Dwarfs using FLASH

Density profiles of thermonuclear supernova simulations from initial Carbon-Oxygen-Neon white dwarfs generating least (left) and most (right) Nickel-56. DOI: https://www.doi.org/10.3847/1538-4357/acf658

Density profiles of thermonuclear supernova simulations from initial Carbon-Oxygen-Neon white dwarfs generating least (left) and most (right) Nickel-56. DOI: https://www.doi.org/10.3847/1538-4357/acf658

C. Feldman, N. Gutierrez, E. Eisenberg, D. E. Willcox, D. M. Townsley, A. C. Calder

2023, Astrophysical Journal, 959, 112

https://www.doi.org/10.3847/1538-4357/acf658

23. ERF: Energy Research and Forecasting

Logo of the Journal of Open Source Software, used under the CC BY 4.0 License. DOI: https://www.doi.org/10.21105/joss.05202

Logo of the Journal of Open Source Software, used under the CC BY 4.0 License. DOI: https://www.doi.org/10.21105/joss.05202

A. Almgren, A. Lattanzi, R. Haque, P. Jha, B. Kosovic, J. Mirocha, B. Perry, E. Quon, M. Sanders, D. Wiersema, D. Willcox, X. Yuan, W. Zhang

2023, Journal of Open Source Software, 8, 87

https://www.doi.org/10.21105/joss.05202

22. Particle-in-Cell Simulations of Relativistic Magnetic Reconnection with Advanced Maxwell Solver Algorithms

Secondary plasmoid reconnection event shown before (top) and after (bottom) initially evolving from a relativistic transverse current sheet. DOI: https://www.doi.org/10.3847/1538-4357/acd75b

Secondary plasmoid reconnection event shown before (top) and after (bottom) initially evolving from a relativistic transverse current sheet. DOI: https://www.doi.org/10.3847/1538-4357/acd75b

H. Klion, R. Jambunathan, M. E. Rowan, E. Yang, D. Willcox, J. L. Vay, R. Lehe, A. Myers, A. Huebl, W. Zhang

2023, Astrophysical Journal, 952, 8

https://www.doi.org/10.3847/1538-4357/acd75b

21. pynucastro: A Python Library for Nuclear Astrophysics

A pynucastro reaction network illustrating the nuclei and reaction rate links for nuclear Magnesium burning including the alpha chain and nearby odd-numbered nuclei. DOI: https://www.doi.org/10.3847/1538-4357/acbaff

A pynucastro reaction network illustrating the nuclei and reaction rate links for nuclear Magnesium burning including the alpha chain and nearby odd-numbered nuclei. DOI: https://www.doi.org/10.3847/1538-4357/acbaff

A. Smith Clark, E. T. Johnson, Z. Chen, K. Eiden, D. E. Willcox, B. Boyd, L. Cao, C. J. DeGrendele, M. Zingale

2023, Astrophysical Journal, 947, 65

https://www.doi.org/10.3847/1538-4357/acbaff

20. Neural Networks for Nuclear Reactions in MAESTROeX

Carbon fusion flame profiles illustrating our machine learning model (dots) compares very favorably to implicit time integration for reactions (lines) on the laminar test case under study. DOI: https://www.doi.org/10.3847/1538-4357/ac9a4b

Carbon fusion flame profiles illustrating our machine learning model (dots) compares very favorably to implicit time integration for reactions (lines) on the laminar test case under study. DOI: https://www.doi.org/10.3847/1538-4357/ac9a4b

D. Fan, D. E. Willcox, C. DeGrendele, M. Zingale, A. Nonaka

2022, Astrophysical Journal, 940, 134

https://www.doi.org/10.3847/1538-4357/ac9a4b

19. Dark Matter from Axion Strings with Adaptive Mesh Refinement

Three-dimensional simulation evolving the axion field over cosmological time, illustrating the axion energy density and axion string structures at late times. DOI: https://www.doi.org/10.1038/s41467-022-28669-y

Three-dimensional simulation evolving the axion field over cosmological time, illustrating the axion energy density and axion string structures at late times. DOI: https://www.doi.org/10.1038/s41467-022-28669-y

M. Buschmann, J. W. Foster, A. Hook, A. Peterson, D. E. Willcox, W. Zhang, B. R. Safdi

2022, Nature Communications, 13, 1

https://www.doi.org/10.1038/s41467-022-28669-y

18. Neutrino Fast Flavor Instability in Three Dimensions

Three-dimensional, all-angle Particle-in-Cell simulation of a three-flavor neutrino fast flavor instability. Volume rendering shown illustrates the fastest-growing electron-muon neutrino flavor instability, seen in shaded contours which evenly subdivide the angular electron-muon phase at 0 (blue), two-thirds pi (white), and four-thirds pi (red). DOI: https://www.doi.org/10.1103/PhysRevD.104.103023

Three-dimensional, all-angle Particle-in-Cell simulation of a three-flavor neutrino fast flavor instability. Volume rendering shown illustrates the fastest-growing electron-muon neutrino flavor instability, seen in shaded contours which evenly subdivide the angular electron-muon phase at 0 (blue), two-thirds pi (white), and four-thirds pi (red). DOI: https://www.doi.org/10.1103/PhysRevD.104.103023

S. Richers, D. E. Willcox, N. M. Ford

2021, Physical Review D, 104, 103023

https://www.doi.org/10.1103/PhysRevD.104.103023

17. Practical Effects of Integrating Temperature with Strang Split Reactions

Space and time convergence of fluid density for three variations of the Strang method for reacting hydrodynamics. DOI: https://www.doi.org/10.3847/2515-5172/abf3cb

Space and time convergence of fluid density for three variations of the Strang method for reacting hydrodynamics. DOI: https://www.doi.org/10.3847/2515-5172/abf3cb

M. Zingale, M. P. Katz, D. E. Willcox, A. Harpole

2021, Research Notes of the AAS, 5, 71

https://www.doi.org/10.3847/2515-5172/abf3cb

16. Dynamics of Laterally Propagating Flames in X-Ray Bursts. II. Realistic Burning and Rotation

Nuclear energy generation rate within a Helium fusion flame on a neutron star surface rotating with 1ms period. DOI: https://www.doi.org/10.3847/1538-4357/abee87

Nuclear energy generation rate within a Helium fusion flame on a neutron star surface rotating with 1ms period. DOI: https://www.doi.org/10.3847/1538-4357/abee87

A. Harpole, N. M. Ford, K. Eiden, M. Zingale, D. E. Willcox, Y. Cavecchi, M. P. Katz

2021, Astrophysical Journal, 912, 36

https://www.doi.org/10.3847/1538-4357/abee87

15. Particle-in-cell Simulation of the Neutrino Fast Flavor Instability

Time evolution of the average neutrino density over one-half nanosecond showing the fastest axially symmetric instability. DOI: https://www.doi.org/10.1103/PhysRevD.103.083013

Time evolution of the average neutrino density over one-half nanosecond showing the fastest axially symmetric instability. DOI: https://www.doi.org/10.1103/PhysRevD.103.083013

S. Richers, D. E. Willcox, N. M. Ford, A. Myers

2021, Physical Review D, 103, 083013

https://www.doi.org/10.1103/PhysRevD.103.083013

14. Preparing Nuclear Astrophysics for Exascale

Density contours and the thermonuclear ignition point for colliding white dwarf stars simulated with the CASTRO code. DOI: https://www.doi.org/10.1109/SC41405.2020.00095

Density contours and the thermonuclear ignition point for colliding white dwarf stars simulated with the CASTRO code. DOI: https://www.doi.org/10.1109/SC41405.2020.00095

M. Katz, A. Almgren, M. Barrios Sazo, K. Eiden, K. Gott, A. Harpole, J. Sexton, D. Willcox, W. Zhang, M. Zingale

2020, Supercomputing 20 (SC20)

https://www.doi.org/10.1109/SC41405.2020.00095

13. CASTRO: A Massively Parallel Compressible Astrophysics Simulation Code

Logo of the Journal of Open Source Software, used under the CC BY 4.0 License. DOI: https://www.doi.org/10.21105/joss.02513

Logo of the Journal of Open Source Software, used under the CC BY 4.0 License. DOI: https://www.doi.org/10.21105/joss.02513

A. Almgren, M. Barrios Sazo, J. Bell, A. Harpole, M. Katz, J. Sexton, D. Willcox, W. Zhang, M. Zingale

2020, Journal of Open Source Software, 5, 54, 2513

https://www.doi.org/10.21105/joss.02513

12. Dynamics of Laterally Propagating Flames in X-Ray Bursts. I. Burning Front Structure

Mean molecular weight within a Helium fusion flame on a neutron star surface. DOI: https://www.doi.org/10.3847/1538-4357/ab80bc

Mean molecular weight within a Helium fusion flame on a neutron star surface. DOI: https://www.doi.org/10.3847/1538-4357/ab80bc

K. Eiden, M. Zingale, A. Harpole, D. Willcox, Y. Cavecchi, M. P. Katz

2020, Astrophysical Journal, 894, 6

https://www.doi.org/10.3847/1538-4357/ab80bc

11. The Castro AMR Simulation Code: Current and Future Developments

Weak scaling on GPU and CPU for the CASTRO code running a white dwarf merger simulation on the Summit supercomputer. DOI: https://www.doi.org/10.1088/1742-6596/1623/1/012021

Weak scaling on GPU and CPU for the CASTRO code running a white dwarf merger simulation on the Summit supercomputer. DOI: https://www.doi.org/10.1088/1742-6596/1623/1/012021

M. Zingale, A. S. Almgren, M. Barrios Sazo, J. B. Bell, K. Eiden, A. Harpole, M. P. Katz, A. J. Nonaka, D. E. Willcox, W. Zhang

2020, Journal of Physics: Conference Series, 1623, 012021

https://www.doi.org/10.1088/1742-6596/1623/1/012021

10. Modelling low Mach number stellar hydrodynamics with MAESTROeX

GPU speedup for MAESTROeX core subroutines on the Summit supercomputer. DOI: https://www.doi.org/10.1088/1742-6596/1623/1/012015

GPU speedup for MAESTROeX core subroutines on the Summit supercomputer. DOI: https://www.doi.org/10.1088/1742-6596/1623/1/012015

A. Harpole, D. Fan, M. P. Katz, A. J. Nonaka, D. E. Willcox, M. Zingale

2020, Journal of Physics: Conference Series, 1623, 012015

https://www.doi.org/10.1088/1742-6596/1623/1/012015

9. MAESTROeX: A Massively Parallel Low Mach Number Astrophysical Solver

Logo of the Journal of Open Source Software, used under the CC BY 4.0 License. DOI: https://www.doi.org/10.21105/joss.01757

Logo of the Journal of Open Source Software, used under the CC BY 4.0 License. DOI: https://www.doi.org/10.21105/joss.01757

D. Fan, A. Nonaka, A. Almgren, D. Willcox, A. Harpole, M. Zingale

2019, Journal of Open Source Software, 4, 43, 1757

https://www.doi.org/10.21105/joss.01757

8. SN Ia Explosions from Hybrid Carbon-Oxygen-Neon White Dwarf Progenitors That Have Mixed During Cooling

Estimated Nickel-56 mass produced by mixed, hybrid Carbon-Oxygen-Neon white dwarf models. DOI: https://www.doi.org/10.3847/1538-4357/ab511a

Estimated Nickel-56 mass produced by mixed, hybrid Carbon-Oxygen-Neon white dwarf models. DOI: https://www.doi.org/10.3847/1538-4357/ab511a

C. N. Augustine, D. E. Willcox, J. Brooks, D. M. Townsley, A. C. Calder

2019, Astrophysical Journal, 887, 188

https://www.doi.org/10.3847/1538-4357/ab511a

7. Toward Resolved Simulations of Burning Fronts in Thermonuclear X-ray Bursts

Nuclear energy generation rate inside a helium flame on a neutron star surface. DOI: https://www.doi.org/10.1088/1742-6596/1225/1/012005

Nuclear energy generation rate inside a helium flame on a neutron star surface. DOI: https://www.doi.org/10.1088/1742-6596/1225/1/012005

M. Zingale, K. Eiden, Y. Cavecchi, A. Harpole, J. B. Bell, M. Chang, I. Hawke, M. P. Katz, C. M. Malone, A. J. Nonaka, D. E. Willcox, W. Zhang

2019, Journal of Physics: Conference Series, 1225, 012005

https://www.doi.org/10.1088/1742-6596/1225/1/012005

6. Thermonuclear (Type Ia) Supernovae and Progenitor Evolution

Specific energy generation rate in a simulated white dwarf cross section resulting from carbon fusion and A=23 Urca reactions. DOI: https://www.doi.org/10.1088/1742-6596/1225/1/012002

Specific energy generation rate in a simulated white dwarf cross section resulting from carbon fusion and A=23 Urca reactions. DOI: https://www.doi.org/10.1088/1742-6596/1225/1/012002

A. C. Calder, D. E. Willcox, C. J. DeGrendele, D. Shangase, M. Zingale, D. M. Townsley

2019, Journal of Physics: Conference Series, 1225, 012002

https://www.doi.org/10.1088/1742-6596/1225/1/012002

5. Quantification of Incertitude in Black Box Simulation Codes

Surface plot showing model white dwarf’s mass dependence on wind parameters driving mass loss. DOI: https://www.doi.org/10.1088/1742-6596/1031/1/012016

Surface plot showing model white dwarf’s mass dependence on wind parameters driving mass loss. DOI: https://www.doi.org/10.1088/1742-6596/1031/1/012016

A. C. Calder, M. M. Hoffman, D. E. Willcox, M. P. Katz, F. D. Swesty, S. Ferson

2018, Journal of Physics: Conference Series, 1031, 012016

https://www.doi.org/10.1088/1742-6596/1031/1/012016

4. pynucastro: an interface to nuclear reaction rates and code generator for reaction network equations

Logo of the Journal of Open Source Software, used under the CC BY 4.0 License. DOI: https://www.doi.org/10.21105/joss.00588

Logo of the Journal of Open Source Software, used under the CC BY 4.0 License. DOI: https://www.doi.org/10.21105/joss.00588

D. E. Willcox, M. Zingale

2018, Journal of Open Source Software, 3(23), 588

https://www.doi.org/10.21105/joss.00588

3. Meeting the Challenges of Modeling Astrophysical Thermonuclear Explosions: Castro, Maestro, and the AMReX Astrophysics Suite

Density contours from a simulation of merging white dwarfs. DOI: https://www.doi.org/10.1088/1742-6596/1031/1/012024

Density contours from a simulation of merging white dwarfs. DOI: https://www.doi.org/10.1088/1742-6596/1031/1/012024

M. Zingale, A. S. Almgren, M. G. Barrios Sazo, V. E. Beckner, J. B. Bell, B. Friesen, A. M. Jacobs, M. P. Katz, C. M. Malone, A. J. Nonaka, D. E. Willcox, W. Zhang

2018, Journal of Physics: Conference Series, 1031, 012024

https://www.doi.org/10.1088/1742-6596/1031/1/012024

2. Cosmic Chandlery with Thermonuclear Supernovae

Deflagration-to-detonation transition for a simulated C-O white dwarf. DOI: https://www.doi.org/10.1088/1742-6596/837/1/012005

Deflagration-to-detonation transition for a simulated C-O white dwarf. DOI: https://www.doi.org/10.1088/1742-6596/837/1/012005

A. C. Calder, B. K. Krueger, A. P. Jackson, D. E. Willcox, B. J. Miles, D. M. Townsley

2017, Journal of Physics: Conference Series, 837, 012005

https://www.doi.org/10.1088/1742-6596/837/1/012005

1. Type Ia Supernova Explosions From Hybrid Carbon-Oxygen-Neon White Dwarf Progenitors

Progress of the burning front into the stellar core for one simulated hybrid C-O-Ne white dwarf. DOI: https://www.doi.org/10.3847/0004-637X/832/1/13

Progress of the burning front into the stellar core for one simulated hybrid C-O-Ne white dwarf. DOI: https://www.doi.org/10.3847/0004-637X/832/1/13

D. E. Willcox, D. M. Townsley, A. C. Calder, P. Denissenkov, F. Herwig

2016, Astrophysical Journal, 832, 13

https://www.doi.org/10.3847/0004-637X/832/1/13

Back to top