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Abstract

Motivated by recent results in stellar evolution in which convective boundary mixing in SAGB stars can give rise to hybrid white dwarf (WD) stars with a C-O core inside an O-Ne
shell, we simulate thermonuclear (Type Ia) supernovae from these hybrid progenitors. We use the FLASH code to perform multidimensional simulations in the deflagration to
detonation transition (DDT) explosion paradigm from progenitor models produced with the MESA stellar evolution code that include the thermal energetics of the Urca process.
We performed a suite of DDT simulations over a range of ignition conditions and compare to previous results from a suite of C-O white dwarfs. Despite significant variability
within each suite, distinguishing trends are apparent in their Ni-56 yields and the kinetic properties of their ejecta. We comment on the feasibility of these hybrid WD explosions
as the source of some classes of observed subluminous events.

Hybrid Type Ia Supernovae Progenitor Profile
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Above: Hybrid WD profiles as computed in (Denissenkov, et al. 2015).

ZND Detonations for C-O-Ne Fuel
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Above: Mass fraction evolution with time after shock for carbon fractions of 0.5, 0.15, & 0.05.
Right: 28Si - 54Fe crossing time for X12C = 0.05 − 0.50.
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Initialization of the Deflagration

Above: Deflagrations in 35 hybrid realizations are initialized by
choosing different numbers and sizes of ignition regions placed at the
temperature peak at the base of the convective zone. The green contour
indicates the DDT density (107.2 g/cm3). In 26 C-O realizations,
deflagrations are initialized by igniting a sphere with a randomly
perturbed surface as in (Krueger, et al. 2012).

Delayed Core Detonation For Some Hybrid Realizations
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Below: Estimated
56Ni mass over time,
showing a secondary
plateau near 2.0s in
the 6 delayed core
burning cases.
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Above: Ignition region and delayed progression of the detonation front through the core as in 6 of the 35 hybrid realizations. White is
unburned fuel (12C, 16O & 20Ne) and Red is ash from 12C and 20Ne-burning. Green is material in quasi-nuclear statistical equilibrium, and
Black denotes material in nuclear statistical equilibrium (Fe-group elements and α-particles).

Integral Quantities (e.g. 56Ni Mass) With Shading Showing the Range of Results Given By The Hybrid and CO Suites of Simulations
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Conclusions

I Type Ia Supernovae from hybrid white dwarf progenitors yield on average 0.1M� less 56Ni than from C-O progenitors,
suggesting they will be correspondingly dimmer. Exceptions may occur, however, given the large spread in possible 56Ni
production among our hybrid realizations.

I Hybrid progenitors deposit an average of 21% less kinetic energy in their ejecta than C-O progenitors, indicating slower
expansion velocities of the ejecta.

I We attribute lower average 56Ni production from hybrid progenitors to the lower binding energy released when burning
20Ne-enriched fuel compared to pure C-O fuel. Based on the comparable average mass remaining at high
(> 2 × 107g/cm3) density at the DDT time for C-O and hybrid models, we conclude that the degree to which fuel is burned
to Fe-group elements is not caused by differences in stellar expansion during the deflagration stage.
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